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THE DENSITY OF ZEROS OF FORMS 
FOR WHICH WEAK APPROXIMATION FAILS 

D. R. HEATH-BROWN 

ABSTRACT. The weak approximation principle fails for the forms x3 +y3 +z3 = 
kw3, when k = 2 or 3. The question therefore arises as to what asymptotic 
density one should predict for the rational zeros of these forms. Evidence, both 
numerical and theoretical, is presented, which suggests that, for forms of the 
above type, the product of the local densities still gives the correct global density. 

Let f(xi, ... , x n) E Q[xi, ... , Xn] be a rational form. We say that f sat- 
isfies the weak approximation principle if the following condition holds. 

(WA) Given an e > 0, a finite set S of places of Q, and zeros 

(X z . .. z Xn )E(V 

of the form f, we can find a rational zero (xl, . . ., Xn) of f such that 

1x1-xvIv<e for l<i<nandveS. 

Alternatively, we may write X(K) for the points on the hypersurface f = 0 
whose coordinates lie in the field K, and consider the product 

Hs = I7 X(QV), 
vES 

with the product topology. Then (WA) says that for any finite set S of places, 
the image of X(Q) in HS, under the diagonal embedding, is dense. Thus, for 
example, nonsingular quadratic forms which represent zero satisfy (WA) when 
n > 3. However, the cubic forms x3 + y3 + z3 - kw3 (k = 2, 3) do not satisfy 
(WA), as we shall show. 

Conjectures about the density of zeros of f are often made by calculating the 
product of all the local densities. These conjectures can sometimes be proved 
using the Hardy-Littlewood circle method, and the product of densities one 
obtains is just the singular series multiplied by the singular integral. However, 
such conjectures must seem highly dubious when (WA) fails. For then one 
knows that there are subsets of I-s where there are a positive density of points, 
but no rational points. Two possible reformulations of the conjecture on the 
global density seem plausible. Either one may make no adjustment, in the 
expectation that the density of rational points in the admissible part of H5 is 
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correspondingly increased; or one may reduce the product of local densities by 
removing those parts of I"s which the failure of (WA) excludes. When the 
Hasse Principle fails for f, we must clearly follow the second procedure. This 
would be the case for the example 5x3 + 12y3 + 9z3 + lOw3 of Cassels and Guy 
[2], for instance. 

The purpose of this paper is to investigate further the above options, prin- 
cipally through an examination of the forms x3 + y3 + z3 - kw3. We first 
prove: 

Theorem 1. If (x, y, z, w) E Z4 is a primitive solution of X3 + y3 + z3 = 

2w3 (so that hcf(x, y, z, w) = 1), then one of x, y, z is divisible by 6. If 
(X, y, Z, W) E Z4 is a primitive solution of x3 + y3 + z3 = 3w3, then either 
x = y = z (mod 9) or one of x, y, z is divisible by 9. 

This demonstrates the failure of (WA) for the above forms. The first form can 
have no rational zero close to both (0, 1, 1, 1) E Q4 and (1, 0, 1, 1) E Q 4 

Similarly, the second form has no rational zero close to (-2, 1, 4, ~'T_) E Q . 
In a letter to the author, Professor Colliot-Thel&ne has shown that the above 

congruence restrictions are exactly those implied by the Brauer-Manin obstruc- 
tion. Moreover, for the general equation x3 + y3 + Z3 = kw3, with a noncube 
integer k, there is always a nontrivial obstruction, eliminating two-thirds of the 
adelic points. 

The proof of the theorem is based on a method of Cassels [1], and uses cubic 
reciprocity in Q(w), where w = (-1 + v-3)/2 . Let k = 2 or 3 as appropriate, 
and suppose that x + yco has a prime factor ir in Q(w). We write p for the 
rational prime above ir, and we suppose that p t 3k. If p is inert, then 

(1) (k/ir)3 = 1 

automatically, and otherwise the congruence z3 =_ kW3 (mod r) implies (1) 
unless p I hcf(z, w) . In the latter case, suppose that ireljx + yuw. Since x, y, 
z, and w are coprime, we have p t hcf(x, y), so that r t x + y, x + yw)2. 

Thus, re 11x3 + y3, whence elliZ3 - kw3 . Hence, either (1) holds or 3 1 e. We 
may therefore conclude that 

(2) (k/ire)3 = 1 

whenever 7re lx + yw( and ir { 3k. 
If k = 2, then exactly one of x, y, z will be even, so that 2 t x + yw). 

Moreover, a congruence (mod 9) shows that 3 divides exactly one of x, y, 
z (y say). Then hcf(x + yo, 3) = 1 and (2) holds for all prime factors of 
x + ywo. It follows that 

1 

on multiplying up the various relations (2). The law of cubic reciprocity now 
yields 

2 J3 
since 3 1 y . This implies that y must be even, and the theorem, for this case, 
follows. 
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If k = 3, then a congruence (mod 3) shows that either 

x _yz=-?i1 (mod3), 

or 3 divides exactly one of x, y, z (y say). In the former case, x + ywO has 
a primary associate xw + yw 2, and the fact that 

3 
VXoj + yC)2) 3 

yields 
XwO + yw02 ?l ?2, or ?4 (mod 9), 

by the supplement to the law of reciprocity. Hence x -y (mod 9), and, by 
symmetry, x _ y _ z (mod 9). In case 3 | y and 3 t xz, then x + ywo is 
primary, and an analogous argument yields 9 1 y. This proves the theorem in 
the second case. 

For a fixed k : 0, the local density of zeros at a finite place p is given by 

Up, k = lim p-3nN(pn), 
n-+oo 

where 

N(pn) = Nk(pn) =#{(x, y, z, w) (modpn) :pthcf(x, y, z, w), 
x3 + y3 + z3 _ kw3 (mod pn)}. 

This expression can be deduced, for example, by considering the major arc 
contribution to a suitable integral. Thus, if we write e(a) = exp(27tia), then 

Rk(N) = #{(x, y, z, w) E Z": jXj, jYl, Jzj < N, hcf(x, y, z, w) = 1, 

x3 +?y3 + z3 = kw3} 

is given by 

e(a(x3 + y3 + z3 - kw3)) da 
? xI, IyI, IzI<N 

IwI<2N 

1 E) (2) (a(x33 + 93 - kw3)) da, 
d=1 Jxj, jyl, IzI<N 

IwI<2N 

where Z1) denotes the condition hcf(x, y, z, w) = 1 , and Z(2) denotes the 
conditions dIx, y, z, w and (x, y, z, w) # (0, 0, 0, 0). For the above- 
mentioned region, the real density of solutions will be rno, k = k-1/31/, where 

f1f 1f[1 dxdydz 
3 J J 1J 1(x3 + y3 + Z3)2/3 

We shall not reproduce the calculation of these densities. The reader may refer 
to Vaughan [5, ??2.4 and 2.6] and Davenport [3, ?6] for the necessary techniques. 

We now see that the conjectured number of solutions, without any adjustment 
for the failure of (WA), would be 

&kN, 6k = Croo, k J l Up,k 
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To evaluate this more explicitly, we observe that, if k is squarefree, then 

N(pn) { p3n-3N(p), n > 1, pt3k, 
p3n-6N(p2), n>2, p13k, 

by Hensel's Lemma. We can calculate N(p) and N(p2) with the aid of cubic 
Gauss sums. We find that, for p t 3k, we have 

N(p) = p3 _1 ifp =_2 (mod 3), 

while for p 1_ (mod 3) we have 

N(p) = p3 - 1 + 3p(p - 1){(k/7)3 + (k/0)3} 

if p splits as mT, with - =1 (mod 3), in Q(cw). When p k, p :$ 3, we have 

N(p2) =p6 _ p4 

and 

N(p2) = p6 _ p4 -p4(p - 1)(7 + ZT) 

in the two cases. Finally, 

(2 .36, k ?1 (mod 9), 

N32 ) 
22 35 , k_ ?2 (mod 9) 
23-3 k ?3 (mod 9),5 
2 * 3 5, k _?i4 (mod 9). 

The product defining Sk is thus conditionally convergent only. However, by 
comparing it with the Euler product for C (rk) (s), we find that 

= c~, 
kakbkCH1,CkH 2, k (k = 2, 3), 

where 

29 23 
a2 a3. , 3 -2 bk = IiM(S - CQ,(rk)(S); a2 = 

32 -4 

H ( 1 
3 

1 ) o( 1 
)7l 

7 1) 

the last product being over primes p 1 (mod 3) which split in Q(Y); and 

2, k = u (- - 

the product being for primes p 1_ (mod 3) which do not split in Q(Y). The 
class number formula gives 

i log(41 + X7 + ) k -2 

T4 , -z=3 
9 4 , -3. 
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Moreover, the products are now absolutely convergent and can be computed 
numerically to give 

c = 0.30663.... 

I1,k = 0.98938... , k=2, 0.98927 ..., k = 3, 

rlk = { 0.95401 ... k = 2, 
n2,k \0.97617 ..., k=3. 

We may also calculate 
9.81424. ..., k = 2, 

UoO,{k 8.57353 ... k= 3, 

and 
bk { 0.814624 ..., k=2, 

k 
t 1.017615 ..., k=3, 

so that 
f 4.1598 ... k = 2, 

5k= 12.3780 ..., k= 3. 
For comparison one may find, by a naive computer search, all primitive 

solutions of x3+y3+z3 = kw3 for k = 2, 3, in the region lxi , Lv l, IzI < 1000. 
Of course, the solutions generally occur in multiples of 12, because of the various 
symmetries involved. In searching for solutions one may use the restrictions 
found in Theorem 1, together with simple congruence conditions to moduli 2, 
7, 9, etc. In this way we find 

R2(1000) = 3906, R3(1000) = 2462, 

so that 
R2(1000) = 0.938..., R3(000) 1.035.... 
1000S2 1000S3 

Figures 1 and 2 (see pages 618 and 619), which show Rk(N) for N < 1000 
together with the lines ekN, indicate a linear growth rate in each case. The 
evidence therefore suggests that 

Rk(N) ' okN. 

despite the failure of (WA). 
Although it seems hopeless to prove an asymptotic formula for Rk(N), we 

can make a plausible heuristic investigation for suitably sized K into the mean 
value EK<k<2K Rk (N) . Allowing for solutions with w = 0, we can write 

00 

(3) Z Rk(N) = 6K + 2 #S(w) , 
K<k<2K w=1 

where 

S(W) ={(X, y Z) E Z3:hcf(x,y,z,w)=1, IxI,IyI,IzI<N, 

w3Ix 3?+3 ?z3,K3< X2 K3 + Z3< W3 x+y + 5 -1- J<2 
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Of course, S(w) is empty unless Kw3 < 3N3. To estimate #S(w) in gen- 
eral, we observe that each admissible triple of residue classes for x, y, and z 
modulo w3 contains V(w) + O(N2w-6) + 0(1) elements, where 

V(w) = meas{(x, y, z) E R3: IXI, IYI, IzI < Nw-3, 

Kw-6 < x3 + y3+ z3 < 2Kw-6}. 

Let 

n(q) =#{x,y, z (modq) :hcf(x,y, z, q) = 1, qjx3+y3+z3}, 
so that n(w3) is the number of available triples of residue classes. Then 

n (w 3)= I n (pe) 
pe ||W3 

and 
n(pe) = p2e nl(P) for e > 2, 

p4 

by Hensel's Lemma. We now define 

p(w) = fi p(p), where p(p) = p-4n(p2). 
P I W 
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The Mobius inversion formula then yields 

p(w) = E v(d), where v(d) = u(d) HO( - p(p)). 

Since n(p2)-=p4 + 0(p712), we have v(d) <g d-112+-, for any e > O. whence 

1 00 + 
- 0 

p p(w) = 1: v(d)[ 
- _ W E v(d) +_ O(W 

I 
/2+e) 

(4) u~~<W d=1 - d=1 

0 (1 + ) + o(wI/2+e) 

We now have to examine 

2 1:W6p(W){V(W) + O(N 2W-6) + 0(1)}, 

the sum being over values w <s NK-13 . According to (4), the error terms are 
O(N3K-13) + O(N 7K -73), whence (3) yields 

: Rk(N) = 2 E w6p(w){V(w+ O(K)N) + O(N3K- 13) + O(N)7K-73). 
K<k<2K w 
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We may write V(w) as the difference V2(w) - V1(w) of two monotonically 
decreasing functions given by 

Vj(w) = meas{(x, y, z) E RW3: lXI, LIY, IzI < Nw-3, 
0< x3+y3 +z3 < jKw-6}. 

A partial summation then produces 

:w6p(w)V(w) = f (I + P(P) J w6V(w)dw 

+0 ( max W1/2+ . W6.V2(W)) wJ<<NK- 1/3 

= EJi (1 + PP) - ) W6V(w) dw + O(N' 2+28K5/6) 

The integral above is 

2J w-3meas {(x, y, z) E lR3: XI, IY, IzI < N, 

K<X3 + Y3 + Z3<2K d K X++Z KdW3 < J 

1 f2K N N N d xd y dz d k 
2 JK JN JN JN (X 3 + Y3 + Z3)2/3 301/3' 

Thus, 

(5) Z Rk(N) + F(1 P + { } N, 
K<k<2K P) 

providing that N2+3 < K < N3- for some constant 5 > 0. It seems likely that 
the lower bound for K could be improved somewhat. We shall want to exclude 
values of k which are cubes, k = j3 say. However, if x3 + Y3 + Z3 = j3W3, 
then z, j, and w determine Q(N8) values of x and y, except when z = jw, 
in which case there are O(N) pairs x, y. It follows that 

R 3(N) < j-'N 5 

whence such terms contribute O(N2+26) to (5). It therefore follows that 

_ Rk(N) (1 + P(P) I { 
k }N 

P 
k ~1/3 N 

K<k<2K P 

for the same range of K as before, where E* indicates that cube values of k 
are omitted. 

We shall now attempt to compare this with N ZK<k<2K6k . When k is not 

a cube, we write 

(6) 5k = cYk lim N n(p( X)) Nk(q(X)) (6) k~~~' _____ =Uook liM (6) ~~~~X-400 P< p(P X)x-40 q(X)3 
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where n(p, X) = [logX/logp] and q(X) = HPpn(px). If the convergence 
were uniform, we could write 

(7) Z k L E ok 
Q 

K<k<2K K<k<2K 

with Q = q (log log N), say. Unfortunately, the convergence in (6) is not uni- 
form. Nonetheless, the relation (7) seems plausible. Indeed, it seems likely that 
one could prove it with a little effort, and we therefore continue our investigation 
on the assumption that it does indeed hold. 

We now observe that 

Z Nk(Q) = Z Nk(Q) + o(Xl/3N6 
k<X k<X 

X + 0(1)) N*(Q) + O(Xl/3N") 

for any e > 0, where 

N*(s) = #{(x, y, z, w, k) (mod s): hcf(x, y, z, w,5s) = 1, 

x3+yj3+ z3 _kw3 (mods)}. 

Thus, summation by parts yields 

(8) ao kNk(Q) = N( Q) + O(K- 13 N(Q)) + (N) 

K<k<2K Q K 1/3 

Moreover, 

N* (Q)= ]7 N* (pe) 
pelIQ 

and 
N* (pe) = Ni (pe) + N2(pe), 

where N1 (pe) counts solutions with p t w, and N2 (pe) counts those with p | w . 
Clearly, 

N, =p4e i -) 

since x, y, z, w determine k uniquely. Moreover, Hensel's Lemma yields 

N2(pe)=p4e N2(p2) 

providing that e > 2 when p = 3. Since, in our earlier notation, we have 
N2(p2) = p3n(p2) = p7p(p), we deduce that 

N*(Q) =Q3 P1+ ) 

p?<log log N 
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so long as loglogN > 9. In view of (7), (8), and (9) we now have 

N* (Q) f2K dk 
L ek Q4 I J + 0(Q-3K-1/3N*(Q)) + O(Q-3N") 

K<k<2K JK k! 

= ji (I + (lf K~ + 0(N6) 
p<loglogN NP 

k 1 

.1 (1pp)-l )J 2KAd 
( P )IK k'!3 

if K > N6, for some constant ( > 0. We therefore have: 

Theorem 2. If the conjecture (7) holds, then 

SE Rk(N) N ek- 
K<k<2K K<k<2K 

Thus, for the equation x3 + y3 + z3 = kw3, all the evidence points to the 
conclusion that the Hardy-Littlewood formula is valid, despite the failure of 
(WA). 

We conclude by investigating the Hardy-Littlewood formula for the equation 
x3 + y3 + z3 = k. The local densities will be 

up = lim p-2nN(pn), 
n-*oo 

where 

N(pn) = #{(x, y, z) (mod pn): x3 + y3 + z3=k (mod pn)}, 

while, for the range N, < max(IxI, LIY, IzI) < N2, the real density of solutions 
is 

- fN~fz dy d=2(N2'~f dt 
cr00 - IN1 Jo 3(z3-y3)2/3 ( N,} (I t3)2/3 

= (log 
N2 B ( , 3.5332 log N2 

For cubefree k we have 

p = N(2p) (p 3) and cy3= 81 

Then, as in our previous calculation, we obtain 

1 1, ptk, 
OuP={lpP-2 plk, 

for p _ 2 (mod 3), and 

l+ 3 )a _ 1 pak, 
p P2 pf 
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if p -1 (mod 3) splits as 7rft in Q(-_3), and 4p = a2 + 3b2 with a = 1 
(mod 3). As before, we may compare up with the Euler factor E(p, k) in 

2(r) (s) . We then find that 

up = Ap I 
P P 

where Ak = lim,, I(s- l)CQ(rk)(s), and up = (rp((l - l/p)/E(p, k))3. We now 
have a convergent product, and we can calculate 

{ 0.366... (log N2/N,), k = 3, 

P t 0.539...(logN2/N,), k = 30, 

for example. In the light of our investigations above, we conjecture that these 
figures give, approximately, the number of solutions of x3 + y3 + z3 = k; 
and that no adjustment for the failure of (WA), as implied by Theorem 1, is 
necessary. In particular, we conjecture that these Diophantine equations have 
infinitely many solutions. However, since the solutions have six symmetries, 
the density of essentially different solutions would be expected to be one-sixth 
of that indicated above. Thus, one might predict, very roughly speaking, one 
new solution of x3 + y3 + z3 = 3 in the range 

N < max{IxI, lyi, IzI} < exp(6/0.366. . . )N 1.3 x 107N, 

and similarly, for x3 + y3 + z3 = 30, one new solution in the range 

N < max{IxJ, lyI, IzJ} < 7 x 104N. 

A search for solutions to these equations (Gardiner, Lazarus, and Stein [4]) 
found only (1, 1, 1) and (4, 4, -5), corresponding to k = 3, and no solu- 
tions for k = 30. Indeed, it was suggested that these equations have no more 
solutions. Inasmuch as the search range was only to 216 -6.5 x 104 , the figures 
above indicate that any such conjecture is premature. In particular, in the case 
of k = 3, it would have been somewhat unexpected if a solution had been 
found. 
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